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This paper is concerned with the interaction of very long-wavelength free-stream 
disturbances with the small but abrupt changes in the mean flow that occur near the 
minimum-skin-friction point in an interactive marginally separated boundary layer. 
We choose the source frequency so that the eigensolutions with that frequency have 
an ‘interactive ’ structure in the region of marginal separation. The eigensolution 
wavelength scale must then differ from the lengthscale of the marginal separation 
and a composite expansion technique has to be used to obtain the solution. 

The initial instability wave amplitude turns out to be exponentially small, but 
eventually dominates the original disturbance owing to its exponential growth. It 
then begins to decay but ultimately turns into a standard spatially growing 
Tollmien-Schlichting wave much further downstream. 

1. Introduction 
There is now considerable interest in understanding how free-stream disturbances 

generate Tollmien-Schlichting waves in laminar boundary layers. The relevant 
experiments are usually carried out by minimizing background disturbances and 
imposing a controlled excitation of a single frequency, say o, on the flow. The Mach 
numbers are usually quite small so that the wavelengths or spatial scales of the 
free-stream disturbances tend to be much larger than the Tollmien-Schlichting 
wavelength, especially for acoustic disturbances (which happen to be very effective 
Tollmien-Schlichting-wave generators). The key to understanding these so-called 
‘receptivity ’ experiments (Morkovin 1969) lies in understanding how the very long 
wavelengths of the free-stream disturbances are reduced to the very short Tollmien- 
Schlichting wavelengths (Reshotko 1976). It is now clear that this can usually be 
attributed to non-uniform or non-parallel mean flow effects which arise from (i) the 
slow, viscous boundary-layer growth, (ii) small but sudden changes in surface 
geometry or (iii) relatively slow variations in surface static pressure. 

Case (i) was studied analytically by Goldstein (1983) and Goldstein, Sockol & Sanz 
(1983)’ and numerically by Murdock (1980). Goldstein (1983) showed that the 
Tollmien-Schlichting waves develop out of the so-called ‘Lam & Rott’ (1960) 
asymptotic eigensolutions (see also Ackerberg & Phillips 1972). These are generated 
near the leading edge, where the unsteady motion is governed by the unsteady 
boundary-layer equation and is therefore influenced by non-parallel mean flow effects 



486 M .  E.  Qoldstein, 8. J .  Leib and S. J. Cowley 

to lowest order of approximation (but is unaffected by cross-stream pressure 
fluctuations). 

Case (ii) was studied by Goldstein (1985), and independently by Ruban (1985). The 
sudden geometry change can now introduce a short streamwise lengthscale that can 
scatter the long-wavelength free-stream disturbances directly into the short 
Tollmien-Schlichting waves. 

Case (iii) is more interesting in that the small lengthscale is not externally imposed 
but is produced by the mean flow itself. It occurs naturally at the minimum- 
skin-friction point when the boundary layer is close enough to separation, and the 
small lengthscale turns out to be of the order of the scaled skin friction multiplied 
by the downstream distance to that point. 

Ruban (1982~)  and Stewartson, Smith & Kaups (1982) independently showed that 
the steady-boundary-layer flow becomes interactive when the scaled skin friction is 
reduced to O ( R t ) ,  where R denotes the Reynolds number based on the downstream 
distance to the minimum-skin-friction point, and that separation can be expected 
when the skin friction is smaller than this. This then sets a lower limit to the 
streamwise lengthscales that can be achieved in such flows. 

Ruban (1982~)  and Stewartson et al. (1982) emphasized the ‘marginal separation’ 
that occurs near the leading edge of thin bodies close to their critical angles of attack 
(for leading-edge stall), but the same type of interaction is likely to occur in other 
flows. The resulting interactive marginally separated flow has a triple-layer structure, 
which is somewhat different from the conventional ‘triple deck ’. It is important to 
notice that such interactions occur even when there is no backflow. 

It is natural to assume that the steady and unsteady flow have the same streamwise 
lengthscale, and to adjust the externally imposed source frequency so that the 
temporal, convective, and viscous effects are all of the same order in an unsteady 
viscous wall layer. But it then turns out to be impossible to specifically identify 
spatially growing TollmienSchlichting waves produced in the resulting unsteady 
flow. We therefore decided to make the unsteady-flow lengthscale somewhat shorter 
than that of the steady flow and thereby allow the unsteady flow to contain normal 
modes with wavelengths that are shorter than the streamwise mean flow scale. 

The steady marginally separated boundary layer is able to support various types 
of eigenmodes (summarized in Appendix C). We scaled the ‘source frequency’ to 
produce the best coupling between the mean flow and a certain eigenmode which was 
found to exhibit spatial growth within the region of marginally separated flow itself. 
This wave eventually begins to decay and ultimately becomes non-interactive? in a 
somewhat larger ‘outer’ region, where the steady marginal separation is non- 
interactive. The decaying mode then evolves into a conventional spatially growing 
Tollmien-Schlichting wave on a much longer streamwise lengthscale. 

There is an important aspect of the analysis that arises from the mismatch of 
lengthscales of the initial steady and unsteady flows. The mismatch causes the initial 
instability wave amplitudes to be exponentially small relative to the free-stream 
disturbance amplitudes (i.e. O(e-l) where r is the lengthscale of steady flow/length- 
scale of unsteady flow, and is O(&) for the disturbance frequency being considered 
herein). A ‘straightforward ’ asymptotic solution that did not account for causality 
at the outset would miss these crucially important terms, which grow exponentially 
and very quickly dominate the original disturbance. However the steady-state causal 
solution must, in principle, be thought of as the long-time limit of the solution to 

t Here we mean non-interactive in the ‘triple-deck’ sense. 
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an initial-value problem. The asymptotic solution to this latter problem turns out 
to be non-uniformly valid in frequency space, when scaled on the source frequency, 
with the result that the steady-state limit fails to exist. But, the steady-state limit 
does exist when the solution is first rendered uniformly valid in frequency space (e.g. 
by means of a composite expansion) and the instability wave then appears naturally 
as part of this solution. 

The structure of the paper is as follows. The theory of interactive marginally 
separated steady flow is reviewed in $2.1. The unsteady motion resulting from the 
interaction of a small-amplitude harmonic oscillation of the free stream with that 
flow is analysed in $2.2. We show that the latter is ‘convectively’ unstable so that 
the steady-state causal solution exists in the sense that any unsteady solution 
satisfying appropriate causal initial conditions becomes time harmonic after a 
sufficiently long period of time. This solution uniquely determines the amplitude of 
the instability-wave eigensolution produced by the interaction. I ts  subsequent 
downstream evolution is traced out in $3, where we show that the eigensolution 
begins to decay as the wall shear increases towards an order-one value and that there 
is an accompanying increase in its wavelength as it evolves into the lowest-order, 
non-interactive, Lam-Rott asymptotic eigensolution. This latter eigensolution then 
turns into a spatially growing Tollmien-Schlichting wave by the wavelength- 
reduction mechanism described by Goldstein (1983), and the formulas given therein 
can be used to trace the eigensolution’s subsequent development. 

The effective ‘coupling coefficient’ and other results are discussed in $4 and some 
comparisons with experiment are given. Appendix C describes the various types of 
eigenmodes that can exist in various frequency ranges and also explains how solutions 
for different ranges of frequencies and values of the minimum wall shear can be 
obtained as limiting cases of the scaling studied here. 

2. The inner solution 
We consider a two-dimensional incompressible laminar flow of density p and 

kinematic viscosity v over a relatively thin two-dimensional body at an angle of 
attack v close to the critical stall angle 6, as predicted by classical boundary-layer 
theory. The precise decrement will be specified more completely below. The upstream 
motion is assumed to consist of a uniform flow with velocity U ,  plus a small harmonic 
perturbation of frequency w and constant amplitude u, 4 U,, so that the unsteady 
motion can be treated as a linear perturbation of the steady flow. 

We introduce orthogonal coordinates {x*, y*} with x* tangent to the body surface 
as shown in figure 1. The steady velocity { U ,  V }  and pressure P are assumed to  be 
normalized by U,  and pvZ, respectively, where U, is the free-stream velocity just 
outside the boundary layer at the minimum-skin-friction point x:, while the unsteady 
velocity perturbation {u, v} and pressure perturbation p are assumed to be normalized 
by u, and pueU,, respectively, where u, denotes the magnitude of the inviscid 
streamwise velocity fluctuation at  x,*. We let 1 denote the characteristic distance 
between the leading edge and x: and require that the Reynolds number R = U, l / v  
based on this distance be large. ( U ,  will usually be O( U,)  but 1 = O(v21,), where 1 ,  
is the streamwise body dimension, for slender bodies at small angle of attack.) 

Introducing the scaled coordinates 
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FIGURE 1. Overall flow configuration. 

and following Ruban ( 1 9 8 2 ~ )  and Stewartson et al. (1982)’ we suppose that a is close 
enough to a, that the normalized wall shear 

7 =xi(,) au 
P O  

(where we have introduced the xi for convenience in considering the outer scale flow) 
behaves like 

T a [(x-~~)~+y(a~-a)]~. (2.3) 

with y > 0 for x near x,. Ruban ( 1 9 8 2 ~ )  and Stewartson et al. (1982) showed that the 
steady flow becomes interactive, and exhibits a three-layered structure in the region 
where 

is 0(1), when the normalized minimum wall shear 

7,in a [?(a, -..)I+ 
is O(R-t). This serves to smooth out the discontinuity in the skin-friction gradient 
that would otherwise occur in the local boundary-layer solution. This scaling 
produces the shortest possible streamwise lengthscale that can occur in an attached 
flow, and is therefore the one of major interest in this work. 

The upstream flow will then correspond to Goldstein’s (1948) non-singular ‘ex- 
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ceptional case ’ and the streamwise boundary-layer velocity just upstream of the 
marginal separation will therefore be of the form 

(2.5) 

where the 0(1) constant p is equal to the normalized static pressure gradient just 
upstream of the region of marginal separation. Ruban (1982~)  and Stewartson et al. 
(1982) show that this is consistent with the numerical boundary-layer solutions a t  
the minimum-skin-friction point zc on slender bodies close to their critical angles of 
attack u = uc, while the singular general case is not. This suggests that local 
interactions, of the type being considered herein, will occur in flows where the 
separation is ‘marginal’ in the sense that the skin friction vanishes, or better, nearly 
vanishes at some position but then immediately recovers downstream of that 
position. 

The analysis applies when u is asymptotically close to u,, and i t  is worth noting 
that the steady flow remains interactive even when u < u,. Stewartson et ul. (1982) 
found that no solution exists above a certain angle of attack vmax and that there are 
two solutions for the range u, < u < urnax. One of these involves backflow, and (as 
conjectured by Ryzhov & Smith 1984) may be absolutely as opposed to convectively 
unstable. It therefore would not be achievable as the steady-state limit of the solution 
to a well-posed initial-value problem. 

Uo = 1 $ L y z + r + O ( y 8 )  P6 Y6 as y + O ,  

2.1. The steadyflow 
For convenience, the relevant portion of Ruban’s (1982~)  and Stewartson’s et al. 
(1982) analyses are summarized in this section. The asymptotic structure of the flow 
is illustrated in figure 2. In  the ‘main deck’ where y = 0(1) it is of the form 

u= Uo(y)+R-ml(zl ,  y)+R-fU,(z,,  y ) +  ..., (2.6) 

(2.8) P = P,+ R-tpz1+R -a&  s - z l +  z RfP(2 , )  +. . . , 
4P 

where Uo is the streamwise velocity of the boundary-layer flow just upstream of the 
interaction region (and therefore satisfies (2.5)), Po is the constant static pressure level 
a t  the interaction region, 

u, = u ; ( y ) A ( z , ) - z ,  v;. (2.9) 

v, = -U(Y)A‘(%)+ v , ( Y ) ,  (2.10) 

(2.11) 

and A and P are related, via the ‘upper-deck’ solution, by the Cauchy integral 

(2.12) 

where the bar indicates that the Cauchy principal value of the integral is to be taken. 
The steady flow in the lower deck, where 

Y y1  = - R-A (2.13) 
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Outer region - linear shear-stress term 
is dominant in wall layer 
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Linear and quadratic 

importance in wall 

xp = O( 1) 

t- I x = O(1) 

FIGURE 2. Boundary-layer flow structure. 

is O( l) ,  has an expansion of the form 

P = P,+ R - ~ P x ,  + R-5 nPs -xl 2 + R*P(x1) + . . . , 
4P 

where Y is determined by 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

If Y is to match with the main deck, the solvability of this system requires that 
A and P be related by 

where 

(2.20) 

(2.21) 

the constant A; is obtained from the matching condition with the oncoming 
boundary layer 

(x: + ( ~ ~ / A i ) e ) l  as z1 + & 00, (2.22) 
A' A - 0  
P 
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70 is a constant defined more precisely in (2.89) below, and xo represents an 
unimportant shift in origin. P can be eliminated between (2.12) and (2.20) to obtain 
a single nonlinear integral-differential equation for A. 

2.2. The unsteadyjow 
We suppose that the time t has been normalized by 1/27, and introduce the Strouhal 
number 8 by 

(2.23) S = - .  

Our steady flow has the shortest possible streamwise lengthscale and, as indicated 
in $ 1, we originally assumed that the unsteady flow had the same streamwise 
lengthscale. We then scaled S so that the temporal, convective and viscous effects 
were all of the same order in a thin viscous wall layer. But the resulting unsteady 
flow turned out to be non-interactive (in the ‘triple-deck’ sense) and, even more 
importantly, the spatially growing Tollmien-Schlichting wave could not evolve from 
any of the normal modes generated by the interaction (see $4 below). 

We therefore scale 8 so that there is a corresponding eigenmode of the steady 
marginally separated boundary layer with streamwise lengthscale, say 16, that is 
somewhat shorter than that of the mean flow, and specifically require that it be short 
enough to make the resulting disturbance interactive and fully unsteady in its lower 
deck (see the remarks following (2.46)). 

To this end, we notice that the continuity equation requires that the normalized 
transverse velocity fluctuation v be O(A+/GB) in the main deck where y = O( I),  when 
the normalized streamwise velocity fluctuation u is O(A+) there. The former forces 
a normalized pressure fluctuationp of the same order of magnitude in the upper deck, 
and the latter then remains unchanged across the entire boundary layer. 

The velocity fluctuation in the main deck forces an O(cA+) streamwise velocity 
fluctuation in the lower deck, where y = O(s) say, and the normalized mean velocity 
is O(sa) there (cf. (2.6)). The temporal, convective, pressure gradient and viscous terms 
in the linearized unsteady streamwise momentum equation are therefore O(Sd+), 
O(e8A+/6), O(A+/PRf), and O(A+/s) respectively, in this region. The fully unsteady 
triple-deck interaction occurs when they are all of equal magnitude, which implies 
that 

€ = R-h, (2.24) 

0 1  

ue 

and that the appropriate O( 1) scaled Strouhal number is 

so = €as. (2.25) 

The relevant streamwise lengthscale is then 6 = e4, which corresponds to the scaling 

x--5, X=- 
€4 * 

(2.26) 

The imposed disturbance is assumed to  be small enough that the unsteady problem 
is completely linear. Then upstream of the interaction region, where the mean flow 
changes on the scale I in the streamwise direction, the relatively high frequency of 
the disturbances ensures that the unsteady flow will have harmonic time dependence 
and vary only slowly in the streamwise direction. The leading-order unsteady flow 
is therefore given by a Stokes-layer solution with a slowly varying amplitude 
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(Lighthill 1954). Then, with our scaling, the solution just upstream of the interaction 
can be written as 

u = u 0 e-ist, (2.27) 

v = 0, 

p = iS(x-x,) e-ist, (2.28) 

(2.29) where we have put 

and the scaled transverse coordinate 

0 -  = 1 -e(iash = 1 -e(iss,)iy 

Y Y E -  
€ 

(2.30) 

is order one in the Stokes layer. 

region can be written as an inverse Laplace transform to obtain 
The solution to the relevant initial-value problem in the marginally separated 

m+iC e-iSpt 

u = u e-ist+- &(XI, Y)dY, (2.31) 
2x1 ' I  -m+iC - Y-s 0 

(2.32) 

p = iS(z - xc) ewist + - (2.33) 

where C 2 0, and a,, C,, and 9, satisfy the linearized unsteady boundary-layer 
equations 

- iYZ, + a( UiiYxl + ii, U,,) +R@, U ,  + VC,J + @ijYz, - c,~, 
= f i U X l ~ , + H V ~ ,  duo (2.34) 

f iQYxl  + CYu Ri = 0, (2.35) 

to the appropriate level of approximation. We have set the unimportant initial 
conditions to zero and, again to lowest approximation, we must require that 

G,+O asy+co (2.36) 

and i i9=fiY=0 a t y = O .  (2.37) 

The steady-state 'causal' solution exists only when the integration contour in 
(2.31)-(2.33) can be continuously deformed onto the real axis without crossing a 
singularity of the integrand (Briggs 1964; Bers 1975), in which case that solution is 
given by u = e-ist(uo+Gs), etc., where 6, = ti9 

We anticipate that the unsteady solution will exhibit the usual multilayered 
structure. 

(i) In the main boundary layer, where y = O ( l ) ,  it will be of the form 

a, = €2U; a ( X ,  xl, €) + O(€Y), (2.38) 

(2.39) 

where the displacement a and pressure p ,  are to be determined. 
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(ii) When 
9, = € 2 9  (2.41) 

is order one, there is no need to explicitly distinguish the y1 = O(1) region, i.e. the 
steady lower deck, at the present level of approximation; (2.38)-(2.40) remain valid 
there. But closer to wall, where Y = O ( l ) ,  we expect the solution to be of the form 

4, = 8U1(X, Y , X l , € ) + O ( € ~ ) ,  (2.42) 

5, = €7V1(X,  Y ,  xl, €) +O(€?), (2.43) 

$9 = ."p,(X, xl, 8 )  +@). (2.44) 

(iii) Finally a and p, are related by the usual subsonic upper-deck displacement 
law 

(2.45) 

Substituting these, along with (2.13)-(2.16), into (2.34) and (2.35), we find that u1 
and v1 satisfy 

- i 9 , u 1 + $ P ~ + p Y v 1 - -  aU - - dpO pA'Y ax ay2 dX 

-+- 3% 3% - - 0, 
ax ay 

(2.47) 

where the prime on the A still denotes differentiation with respect to the slow 
streamwise variable xl. 

It is important to notice that we have explicitly introduced the short streamwise 
variable X even though the 'source term' on the right-hand side of (2.34) depends 
only on the slow variable x1 (which might suggest seeking a solution that is 
independent of X, cf. Lighthill 1954). However, as was pointed out by Smith (1982) 
and Elliott & Smith (1987), this short lengthscale develops naturally in the solution 
of the initial-value problem and its exclusion from (2.46) and (2.47) would preclude 
any possibility of instability waves appearing in the flow. 

Our decision to include this term is based on a preliminary analysis of the problem. 
The details are rather tedious, but the major points can be outlined as follows. The 
straightforward Lighthill-type approach turns out to be non-uniformly valid at small 
values of 9, and an inner (i.e. low-frequency) expansion has to be worked out in order 
to render it uniformly valid there. It turns out that the correct inner solution is 
governed by an inhomogeneous form of the equation considered by Ryzhov & Smith 
(1984). 

Its solution develops a finite time singularity (due to the rapid growth of its 
small-wavelength components) which can be deferred (see (2.88) and f.f.) by rendering 
it uniformly valid on the length and frequency scales X = O(1) and 9, = O(1) 
respectively. This can be done by using the method of matched asymptotic 
expansions. The outer solution in the relevant composite expansion satisfies an 
inhomogeneous equation of the form (2.46) (with v1 determined by (2.47) and the 
derivatives with respect to the fast 'variable' X included). But this shows that the 
Lighthill-type scaling, which led to the original outer solution, must have been 
incorrect and that the terms involving X should have been retained a t  the outset. 

We note that two scaled streamwise coordinates are not being treated as indepen- 
dent variables (as in the usual method of multiple scales), and that (2.46) and (2.47) 
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will be solved exactly without making any use of the fact that the y2aul/aX, Yw,, 
and dpo/dX terms are formally small in a strict asymptotic sense. A similar approach 
is described by Stewartson (1981) for an almost inviscid critical layer, where a small 
viscous term is promoted in order to resolve an exponentially large, violently 
oscillatory solution. 

We shall see that the resulting solution involves instability waves that rapidly grow 
to dominate over the X-independent forced solution in the region where z1 = O ( l ) ,  
even though their initial amplitude is exponentially small. This in itself can be 
considered as sufficient reason for retaining the formally small convective terms in 
(2.46). The only question we do not completely answer is whether our procedure 
misses some combination of eigensolutions that are of higher algebraic order but have 
numerically smaller factors in the exponent. But since we solve the equations exactly, 
that could only occur if there were additional small terms that should have been 
retained in the equations. 

2.3. The solution 
Differentiating (2.46) with respect to X, using (2.37) and the definitions (2.4), and 
(2.24)-(2.26), and finally using (2.47) to eliminate ul we obtain 

(2.48) 

(2.49) a w l  - 
ay 
- - v1 = 0 for Y = 0, and 

where the operator L is defhed by 

a a 3  
p Y - + - .  ax ay3 

a a2  

o a  Y axay L G iY  - - -pip--  

These equations must be solved subject to an appropriate matching condition. They 
possess a solution of the form 

(2.50) 

provided g and q satisfy 

(2.52) 

g=--  - o for Y = 0. (2.53) 
ay 

and 

Correspondingly, a will have the representation 
m 

a = p I-, hyo(X- 8) A"(fl)  dzl, 

where hyo is related to g by the matching condition 

(2.54) 

(2.55) 
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which follows from (2.5), (2.39) and (2.43). Also q ( X - g )  is related to h y o ( X - g )  by 

(2.56) 

which follows from (2.45). 
In  writing (2.50), (2.51) and (2.54), we have implicitly adopted a modified 

Green-function approach in which the Green function by, depends only on the fast 
variable X while the source function depends only on the slow variable xl. We could 
also have proceeded, perhaps more directly, by treating X and z1 as if they were of 
the same order and taking Fourier transforms of (2.48) with respect to X (or q). 
However, we are actually seeking a causal solution to an initial-value problem, which 
forces us to consider (in $2.4 below) the limiting form of the solution aa sPo+O in 
order to discuss its matching with an appropriate inner solution, which is valid when 
Yo = O(e2R*). This solution depends only on the slow variable z1 and, as will be 
shown below, it turns out to be especially convenient to demonstrate that the 'Green 
function' hYo actually depends on this variable and not on X when Yo = O(saR*). 

Introducing the ' fast-variable ' Fourier transform 
00 

e-ik(X-;P) Q dx,. (2.57) - 
= I, 

and similarly for 7E and 1, we find from (2.50) and (2.52) that 

- UO go = g+- 
ipk 

satisfies &" +i (Y0-ipk P) &+ ikp Go = k?, (2.58) 

(2.59) 

(2.60) 

(2.61) 

where the prime now denotes differentiation with respect to Y, and we define the 
analytic function 

Ikl = [(k+iO)(k-iO)]' (2.62) 

with the branch of the square roots chosen to make Re Ikl 2 0. Putting 

(2.63) 

and introducing the new variables (see Lyne 1970) 

and (2.65) 

into (2.58), we obtain, upon dividing by 7' and differentiating the result with respect 
to n, 

(2.66) 
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where the primes now denote differentiation with respect to  7, and the branch cuts 
for k: are taken along the positive imaginary axis so that (ik): = e*in/41klt for k 3 0 
when k is real. Inserting (2.63)-(2.65) into (2.58) and applying the first boundary 
condition (2.59), we obtain 

d 1 
-($Z) = - [ik%(2ikp)f+ is:] for 7 = 0. 
d7 4 4 2  

(2.67) 

Expressing the second boundary condition (2.59) in terms of Z is somewhat more 
complicated. To this end we differentiate (2.58) with respect to Y, insert 
(2.63)-(2.65), use (2.66) to  eliminate Z", and finally impose the second boundary 
condition (2.59) t o  eliminate 9,. The result is 

(2.68) 

Then integrating (2.65) with respect to 7, using (2.60) and (2.64) and inserting the 
result into (2.68), finally yields 

Both sides of this equation become infinite as 7+0 but, as we shall see, the singular 
parts cancel out and the remaining finite terms provide a proper boundary condition 
for 2. 

Equation (2.66) is easily transformed into an inhomogeneous Kummer's equation, 
and its solutions can therefore be expressed in terms of confluent hypergeometric 
functions. The solution that remains bounded a t  infinity can be written as 

(2ikp)l 2- 

1 6 4 2  
Ik ' [W(Mi ,  Ui)+c2 q], z =  (2.70) 

where c2 is a constant, the primes still denote differentiation with respect to 7, 

W(S,  7) W(Mi,  Ui)  = Mi Ui- UiMi (2.71) 

denotes the Wronskian of Mi and Ui in the usual notation, and we have put 

U,.(S, 7) = - Jqm U(f- i s ,  1 + 2r, ii) ed12 dq, (2.72) 

and (2.73) 

where U and M denote the Kummer confluent hypergeometric functions in the usual 
notation, i.e. M denotes and U+O as Rev+ co (see Abramowitz & Stegun 1964, 
p. 504). 

Inserting (2.70) into the boundary condition (2.67) and using the properties of U 
and M given in Abramowitz & Stegun (1964, p. 504) we find that 

(2.74) 
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Similarly, inserting (2.70) into the boundary condition (2.69), noting that the 
O(7-h) singular terms cancel out, we obtain 

+ 2c2 + s I,” W dq] = (2/2)4ip~(2ikp)@&~. (2.75) r(t - is) 

Finally, using (2.61) and (2.74) to eliminate c2 and ij, yields 

(2.76) 

where we have put 

and 
(2.78) 

Since (2.54) is of convolution form, (2.4), (2.24), (2.26), (2.38) and the definition 
(2.57) of the Fourier transform show that the streamwise velocity fluctuation 
amplitude in the main boundary layer is given by 

(2.79) 

00 

where AT(k) 3 4 I e-’””1”(Z1) d0, (2.80) 

is the Fourier transform of pA”/A; in terms of the ‘slow’ streamwise variable 0,. 

A0 -w 

2.4. The eigensolution and the steady-state causal solution 
The equation 

A(K, )  = 0 (2.81) 

possesses an infinite set of simple roots, say K, for n = 2,3,4, .  . . , which have positive 
real and imaginary parts when the Strouhal number Y is real (see Elliott & Smith 
1987, for a related result). It also possesses a root, say K,, that lies in the lower half- 
plane when the Strouhal number Y is real but moves into the upper half-plane when 
Y has a positive imaginary part. 

To obtain the steady-state causal solution the integration contour in (2.31)-(2.33) 
must be deformed onto the real axis without crossing a singularity of (2.79) (as 
explained beneath (2.37)). This, in turn, requires that we simultaneously deform the 
integration contour in (2.79) so that it always lies below the pole at K~ in its integrand 
as C‘+O. The path of K, was traced numerically as ImYo+O for various (fixed) 
K c y o ,  and the results are represented by the solid curves of figure 3. Also shown 
in this figure are the Y o + O  asymptote of Elliott & Smith (1987) (short-dashed curve) 
and the Yo+ 00 limit 

(2.82) 
- i l in 
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Re ( 2 K l l d )  

FIGURE 3. Path of roots of dispersion relation (2.81) as ImY+O: ---, equation 
- - _ _ -  , low-frequency mymptote from Elliott & Smith (1987). 

(2.82); 

(long-dashed curve), where the leading term in (2.82) is that obtained by Elliott & 
Smith (1987). Figure 3 shows that as ImSp,+O, K~ always moves into the lower 
- half-plane without ever intersecting another root of (2.81). This ensures that the factor 
hYo will not preclude the required deformation of the integration contour in (2.79). 
When this deformation is carried out AT must be analytically continued into the 
complex k-plane. The result cannot be analytic everywhere in this plane because the 
integral in (2.80) exists only for real k. AT turns out to have branch cuts along the 
entire imaginary axis for the A” of interest here (see (2.91) below). The integration 
contour of (2.79) must therefore pass through k = 0, but this does not conflict with 
the deformation imposed by the hYo factor because K~ never crosses k =  0 as 
ImYo+O. 

Having deformed the integration contours in (2.31)-(2.33) onto the real-Y axis, 
we must now consider the behaviour of the integrand at Yo = 0. Equations 
(2.76)-(2.78) show that 

and 

(2.83) 

(2.84) 

as YO+O. These suggest that k and X-g should scale as Yb and Y;f respectively 
as YO+O, and (2.79) shows that 8, has an integrable branch-point singularity of 
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O(9’;:) at Yo = 0 (see (2.91) below). It is worth noting that the Lighthill-type solution 
would have a non-integrable singularity there. Strictly speaking, the problem should 
be rescaled in the manner of Ruban (1982b) and Smith (1982) when Yo = O(e2R-h), 
in which case (2.84) shows that hYo depends on the slow scale x1 -Zl, as asserted above. 
We do not tackle the Yo = O(s2R-8) problem here and assume that any singularity 
that might exist at Yo = 0 will be no worse than O(9’;z.) Then on setting C = 0 in 
(2.31), we find that the contribution from this singularity decays at least like t-f as 
t+ 00 (Carrier, Krook & Pearson 1966, pp. 255-256). 

The only other singularity in the integrand of (2.31) (with C = 0) is a pole at 
Yo = So. Then as explained above, the steady-state causal solution exists and is given 
by iiSebist. The poles of the integrand of this latter quantity, given by (2.79) with 
S = 9, and corresponding to the roots K,  of (2.81), contribute the following terms, 
say u,, to the result: 

where 

(2.85) 

(2.86) 

(2.87) 

and A T ( ~ , / d )  denotes the analytic continuation of the Fourier transform (2.80) into 
the complex E-plane. 

These are eigensolutions, or better, normal modes, of the original boundary-value 
problem, but their coefficients, which we refer to as the ‘coupling coefficients’, are 
now uniquely determined. The lowest-order mode, which corresponds to K~ and, for 
reasons given below, is of principal interest here, will exhibit spatial growth in the 
downstream direction and therefore represents a spatially growing instability wave. 

An important consequence of (2.85) can be deduced by considering its limit as 
Re (Yo) + 00. Equation (2.82), and the asymptotic results of Elliott & Smith (1987) 
show that - I r n ( ~ ~ )  increases like 9’f as Re(Y)+co. The contour integrals 
(2.31)-(2.33) (on which our analysis is based) cannot, therefore, exist because the 
contribution of the corresponding pole causes the integrands to grow too rapidly as 
Re (9’) + 00. This is due to the non-uniform validity of the present solution at large 
9’. The increase in -Im ( K ~ )  with 9’ would eventually be reversed at  wavelengths 
comparable with the thickness of the steady boundary layer in the uniformly valid 
result (that there must be a maximum growth rate follows from the fact that 
small-wavelength disturbances satisfy the Orr-Sommerfeld equation, whose solutions 
do not exhibit spatial growth at  infinite Strouhal number for sufficiently smooth 
mean-flow profiles). 

A uniformly valid composite solution must be constructed in order to obtain 
convergence. Its Fourier transform, with respect to X, can be written as 

(2.88) 

where Ul,.(k,Y) is the Fourier transform of the present solution to the boundary- 
value problem (2.48) and (2.49), U1, R(k, 9’) is the solution to this problem with the 
linear operator L replaced by the appropriate Rayleigh scale operator, and U1,TR 
denotes the simplified solution in the wavenumber space overlap domain for these 
two solutions. 

The Briggs (1964kBers (1975) procedure can now be applied, as above, to the 

- 
D1, T(E, 9’) +@I,  R(k, 9’)-v1, TR(k, y), 
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composite expansion (2.88) to determine the net contribution of the instability wave 
to the unsteady solution. The former is determined by a pole that occurs at relatively 
low wavenumbers for the relatively small source Strouhal number (2.26). In which 
case, the contribution from the corresponding instability-wave pole in El,  will be 
cancelled by the one in GI, TR, since the latter must have nearly the same residue at 
these low wavenumbers. The instability wave is, therefore, still given by (2.85) with 
n = 1, which shows that the solution only has to be uniformly valid over timescales 
that are long enough to reaolve the instability wave of interest. 

pole would contribute only at a much larger value of S. But it is still 
necessary to continuously deform the integration contour around this pole in the limit 
as Im Y-+O+. This is possible only when the flow exhibits convective and not absolute 
instability. The latter usually occurs when the mean motion involves some reversed 
flow. 

Moore (1979) showed that similar behaviour occurs in analyses, such as the one 
of Crighton & Leppington (1974), of the small-amplitude unsteady motion on velocity 
discontinuity shear layers - presumably because the discontinuous profile is inap- 
propriate for sufficiently small-wavelength disturbances. 

The 

2.5. Non-interactive steady marginal separation 

We now concentrate on flows that are relatively far from separation (since this is 
probably the case of most experimental interest) ; the scaled minimum wall shear 

70 E 7minR4 (2.89) 

should then be somewhat greater than unity. In  such a case ,uA should not be very 
different from its limiting (i.e. non-interactive) form, as pointed out by Stewartson 
et al. (1982), i.e. 

/LA - [ ( ~ , h i ) ~ + 7 : ] : .  (2.90) 

In which case (2.80) becomes 

AT(k) - 2 (I$) K ,  c*), (2.91) 

where K, is the modified Bessel function of the second kind in the usual notation and 
lkl is defined by (2.62). It therefore follows from the asymptotic expansion of K ,  
(Abramowitz & Stegun 1964, p. 378) that 

(2.92) 

which is exponentially small, since Re K, > 0 for n = 1,2 ,3  etc. This suggests that 
the coupling coefficient should be O ( d  exp { - [ 7 0 / ( A i  e!)] Re Kn}) - an estimate that 
we expect to remain valid even when 70 is not large. 

While the coupling coefficient is exponentially small in a formal asymptotic sense, 
in reality i t  cannot be very far from unity, since e-f = @ cannot be very large for 
any laminar flow. It is worth noting that the complete term (2.85) is exponentially 
large when AX % 1 and n = 1 even though the coupling coefficient is exponentially 
small. The contribution (2.85) then dominates the remaining terms in the solution, 
which have only algebraic order. It must therefore be included in order to render 
the solution uniformly valid in X, which must be accomplished before considering 
its development in the larger outer region. Finally it is worth noting that there is 
precedent in the literature for including exponentially small terms along with 
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algebraically small terms (see Van Dyke 1975, p. 256, note 11 ; Dingle 1973, pp. 5-19) 
even if our composite expansion procedure cannot be completely justified in the 
formal Poincar6 sense. 

3. The outer solution 

they emerge downstream from the region of marginal separation. 
Our primary interest is in the subsequent evolution of the normal modes (2.85) as 

3.1. The meanflow 
It follows from (2.5), (2.6), (2.9) and (2.22) that 

U-AiR*xly++y2 asx,++oo withy-4 1.  (3.1) 

But the static pressure decreases from its maximum near the point x, like xf for thin 
bodies at high angles of attack and eventually becomes of the order of the small angle 
of attack for x % 1.  The variation of the scaled wall shear 7 is then controlled by 
the viscous-boundary-layer growth. Thus 7 first increases rapidly (on the scale of x) 
to an 0(1) value, say xiT(x, R), and ultimately remains constant on an even longer 
scale as x+ 00. 

The mean velocity profile therefore behaves like 

(3.2) 

(3.3) 
for Y = O ( l ) ,  x1 % 1, 

u =s2[A(x; R) Y++Y2+. . .] 
dA 

2dx 
F'= -p1- y2 

where 

and 

(3.4) 

where A, = 0.4696.. . is the scaled Blasius wall shear and the b are O( 1 )  constants, 
which are easily deduced by using thin-airfoil theory in conjunction with the 
linearized boundary-layer equation. From (3.2) and (3.5) we see that the mean flow 
shear term is no longer much smaller than the pressure-gradient term in the lower 
layer when 

We therefore introduce an intermediate region in which 
x--2, = O ( € ) .  (3.6) 

x-x, 
2 =- 

€ 
2 -  (3.7) 

is order one. The latter is much larger (in a formal asymptotic sense) than the original 
marginally separated region x-x, = O(Rd).  Notice that A = O(e-l) in the even 
larger outer region where x-x, = 0(1 )  (see figure 2). 
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3.2. The unsteady solution 

The solutions (2.85), which are valid in the region of marginally separated flow, do 
not remain valid in either of the two outer regions referred to at the end of $3.1, but 
we expect that they will evolve into the correct solutions in a gradual fashion. The 
latter can be obtained by the method of multiple scales (Nayfeh 1973) as was done 
by Goldstein ( 1983) for the asymptotic eigensolutions of the unsteady boundary-layer 
equation. 

We therefore seek a solution for the normal mode of the form 

ii - U'a,(z,) exp - K(z , )  dz, , 
r 3  so"' .I 

where U still denotes the streamwise component of the mean flow velocity (which 
now depends on the slow streamwise coordinate only through the slow variable x,); 
the prime on U denotes differentiation with respect to y ;  a, and K depend on R 
(and ultimately on the slower variable z,) and a, is of the order of magnitude of 
the coupling coefficient alluded to at the end of $2. (Note that the eigenmode 
dominates the free-stream disturbance in this region.) 

This then provides a first approximation to the solution of the linearized mo- 
mentum and continuity equations in the region z,, y = 0(1) provided (see (2.39)) 

v" - -iUKa,(z,) exp - ~(2,) dz; , 
[:3 jazz 1 (3.9) 

where the slow streamwise dependence of $, on x, is also explicitly indicated. 
This will match onto a potential flow in the outer region where y / H  = O( l) ,  and 

the requirement that the latter decay exponentially as y/M+ 00 can only be met 
if 

Po = K .  (3.11) 

The solution in the viscous wall layer, where Y = 0(1 ) ,  must then be of the form 

ii - sG( Y, 2,) exp 

i!? - -s2iG( Y, 2,) ~(5,) exp 

@ - s3~a0 exp 

(3.12) 

(3.13) 

(3.14) 

where the prime now denotes differentiation with respect to Y and G satisfies the 
equation 

G"' + i[S,-K(A Y +!jp YZ)] G + iK(A +,u Y) G = iK2a,, (3.15) 

subject to the homogeneous boundary conditions 

G = G = O  a t Y = O .  (3.16) 
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Introducing the new variables 

(3.17) 

(3.18) 

and (3.19) 

where (3.20) 

and 

we obtain upon differentiation 
~ ~ i ( 2 i ~ p ) i a ~  
-' 

gH"+tH'+i(s"-ig) H = - 

(3.21) 

(3.22) 

where the primes now denote differentiation with respect to 6. 

The solution that does not grow exponentially as Y +. m is therefore given by 
Expressed in terms of these new variables, (3.22) is nearly identical with (2.66). 

where 

and W, U,. and M,. are still given by (2.71)-(2.73). 

iv = W-M3(S", go, Uj(S", g), 

Matching with the main-deck solution (3.9) shows that 

(3.23) 

(3.24) 

(3.25) 

Inserting (3.17)-(3.21) into (3.15) and using the boundary conditions (3.16) shows 
that 

(3.26) 

G-?jp(P+,Y)a, 2h as Y + m .  

dH iK2(2iKp)ho 

dC 8(25O)t 
[-+iH = at Y = go, 

while (3.18), (3.16) and (3.25) show that 

ia Jc: Hdg = - ( 2 i ~ p ) f A .  
8 K  

(3.27) 

Inserting the solution (3.23) and eliminating c3 now leads to the dispersion relation 

D ( K )  = 0, 
where 

(3.28) 
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3.3. Matching with the marginal separation solution 
It follows from (3.6) and (3.19)-(3.21) that C,+O and s"+s* as x 2 + 0 .  Then m+ W ,  
and it follows (Abramowitz & Stegun 1964, p. 504), that 

and 

Hence it follows from (2.77), (2.78), (3.29) and (3.30) that 

D ( K ) + ~ ( K )  as x 2 + 0  

and consequently from (3.28) that 

K+K,,  (3.31) 

where K, is the nth root of the marginal separation dispersion relation (2.81). 
The streamwise velocity fluctuation (3.12) can then be matched to (2.85) for 

n = 1,2 ,3 , .  . . . The matching of the amplitudes determines the initial amplitude and 
consequently the order of magnitude of the slowly varying amplitude function a,. 
The appropriate continuation of the solution (2.85) into the downstream region 

0 < x2 = O(1) 

is therefore given by (3.8) in this case. 

3.4. Sirnplijed behaviour in region x - x c  = 0(1) 
The Reynolds-number scaling for the region x2 %- 1 ,  z-x, = 0(1) is different from 
that implied by (3.8)-(3.14), which are strictly valid only in the region x2 = O( 1). But 
since the correct formulas turn out to be simplified versions of (3.8)-(3.16) to lowest 
approximation, (3.28)-(3.30) remain valid in this region. 

Then, since (3.4) and (3.5) show that A is large when x2 %- 1 and 0 < x-x, = 0(1), 
it follows from (3.19) and (3.20) that f and consequently s" are large in this region, 
while scaling arguments such as those of Appendix C suggest that K and b will be small. 
To obtain an appropriate limiting expression for the dispersion relation (3.28) we first 
express the confluent hypergeometric function integrals (2.72) and (2.73) in terms of 
the parabolic cylinder functionst by using the relations 

and 

P r n  

(3.32) 

(3.33) 

(3.34) 

(3.35) 

t The reader should note that it is now conventional to use the same symbol for the parabolic 
cylinder function as for the corresponding confluent hypergeometric function and to distinguish 
between them by the number of their arguments. 
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where U(a,  2) = D-,_t(Z) denotes the parabolic cylinder function in the usual 
notation and 

(3.36) 

is a second functionally independent parabolic cylinder function (see Abramowitz & 
Stegun 1964, (19.12.3), (19.12.4), (13.4.8) and (13.4.21) on pp. 691 and 507). We then 
use Olver's (1959) large-argument asymptotic expansions for the parabolic cylinder 
functions and Abramowitz & Stegun (1964, (13.4.18)) on p. 507 to show that 

[ U(a, - 2) - w a ,  211 r( -++a) M(a ,Z)  = 

D+-(25,)h+m(i+9") q9", C,)-f q U J 1  
= - ($4) 234-8 [(if++) U( -9"+ 1, (2Q)i)- U( -if- 1, (2C0)4)] 

= -M-@[(%,)+u(-~", (25,)+)+29"U'(-~, (2[,)4)] as flo-+00, (3.37) 

with b finite and 9" = O(co).  This is the dispersion relation for the corresponding 
mn-interactive eigensolutions, i.e. the eigensolutions that would have been obtained 
if the inhomogeneous term in (3.15) were eliminated by setting $3, equal to zero in 
(3.11). It corresponds to letting A+ 00 with ASj = 0(1) and justifies our comment 
(in 0 1 )  that the unsteady eigensolutions become non-interactive as x2+ 00. 

It follows from (3.20) that the last member of (3.37) can be further simplified to 

D - - 2[(24-*)4] gU'( -9", (2Q)4) as z2 -+ 00. 

Hence assuming that s* 4 5, (as we shall show to be the case), and putting p: = 29" 
and 

as&-+Co 

in (B 4) of Appendix B, we find that the dispersion relation (3.27) becomes 

Ai'( -s* (i-) = 0 as f+  CO, (3.38) 

where Ai' denotes the Airy-function derivative in the usual notation. This implies 
that s* = O(&, and consequently that s* 4 5, as assumed above. 

The roots of (3.38), say e-inpn for n = 1,2 ,3 , .  . . , lie along the negative real axis, 
and it follows from (3.20) and (3.21) that the wavenumber K approaches the 
wavenumber ~ 2 )  where 

f o r n =  1,2,3 ,.... (3.39) 

Notice that this result is independent of p. Changing the quantity in the square 
bracket will indicate a corresponding change in the right-hand side of this equation. 

4. Discussion of results 
The dispersion relation (3.27) determines 2ip~IS; = - l / ~ * ~  as a function of 

AS4 A* = 0 
P 

and p*=-& (4.2) 
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FIQURE 4. Variation of (a, c) the real part, and (b ,  d )  the imaginary part, of the lowest-order (n = 1) 
root of dispersion relation (3.28) with A* for various values of /L*. 0, Equation (4.3); ----, root 
from non-interactive dispersion relation; -- 0 --, equation (3.39); 0 ,  computed from equation 
(2.81). 

The roots -s*-2 were computed using Newton iteration to trace out their paths 
for various values ofp* as A* goes from zero to infinity. Infinite-series representations 
of the confluent hypergeometric functions were used to compute U,  etc. for small to 
moderate values of A*, with their large-argument asymptotic expansions also being 
employed in calculating the integral of the Wronskian. The path of integration was 
chosen to minimize oscillations of the integrand and obtain fastest convergence. For 
larger values of A* the confluent hypergeometric functions were expressed in terms 



Tollmien-Schlichting waves on interactive marginally separated jlows 507 

0.175 

0.150 

0.125 

0 I I I I I I 

0 

-0.025 

-0.050 

-0.075 
Re (%) 

-0.100 

-0.125 

-0.150 

-0.175 

O . I  0.030 

h 
%b. 

I p* = 0.1 k=,w 
0.0lOC /- 

O r  
-0.010 I I I I I I I 

FIGURE 5. Variation of (a) the real part, and (b) the imaginary part, of second-order (n = 2) root 
of dispersion relation (3.28) with A* for various values of p*. Variation of (c) the real part, and 
(d) the imaginary part, of third-order (n = 3) root of dispersion relation (3.28) with A* for various 
values of p*. ----, root from non-interactive dispersion relation; - -  0 --, equation (3.39); 
0,  computed from equation (2.81). 

of parabolic cylinder functions, which were then computed using Olver’s (1959) 
uniformly valid asymptotic expansions. Eigenvalues were also calculated by direct 
numerical solution of the differential equation and good agreement was found 
between the results of the different procedures for all cases compared. 

The results for the Zowest-order root are plotted as the solid curves in figure 4. The 
curve with the open circles is calculated from (3.39). Notice that the wavenumber 
K ( P ) ,  which corresponds to the lowest-order root p1 of (3.38), evolves from the 
lowest-order root K~ of (2.81). The solid curves approach the dashed curves asp*+ co 
with A* fixed. The latter are obtained from the non-interactive dispersion relation 
(3.37) and also approach the curves with the open circles as A* + 00. Notice that the 
lowest-order root of this simplified dispersion relation tends to infinity as A* +O. 

17 FLSI 181 
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I n  fact, expanding (3.37) for small A*,  and using the results in Abramowitz & 
Stegun (1964, p. 687), shows that 

Hence i t  follows from (3.18) and (3.21) that 

which is plotted with square symbols on figure 4. Note that (4.3) is not uniformly 
valid, because the double limits p*+oo, A*+O do not commute. I n  fact, the 
dispersion relation becomes interactive again for A* - l/p* (see Appendix C and 
Ruban 1982b). This prevents the root from actually becoming infinite, and allows a 
match with (2.81). 

Results for modes n = 2 , 3  are shown in figure 5. The unbounded wavenumber 
growth exhibited by the lowest-order non-interactive mode when A * + 0 suggests that 
the n = 1 mode and n = 2 , 3 , 4 . .  . modes will have different asymptotic structures in 
the region of marginally separated flow when ,LA* >> 1 (the n = 1 mode is interactive, 
while the other modes are non-interactive - see Appendix C).  Hence two asymptotic 
calculations are necessary to determine all the mode's coupling coefficients for So < 1 .  
The growing n = 1 mode reverts to the Smith-Ryzhovt scaling S - R-h. The 
appropriate scaling for the other modes, T , ~ ~  - R-i, S - Rh (i.e. So - R-A), leads to 
larger Tollmien-Schlichting-wave amplitudes and it was for this reason that we 
initially considered this scaling. However, these modes are of less interest, because 
they all decay everywhere downstream. We were therefore forced to consider the 
present scaling in order to find spatially growing instability waves. 

The results of Appendix A show that 

where 
as z,+w (4.4) 

(4.5) 

is a function of ,u* only, and the proper interpretation of the divergent integral 
r z  

is 

and T(x) = T(x,  R) is defined by (3.4). 

eigensolution (3.8) will behave like 
It follows from (4.4) and the requirements of matching with (2.85), that the 

t We decided not to consider this scaling because our order of magnitude estimates show that, 
for fixed source frequency, Tollmien-Schlichting waves generated further downstream by the case 
(1)  receptivity mechanism discussed in $1 will always have much larger amplitudes at the lower 
branch of the neutral stability curves, where they can begin to grow. 



Tollmien-Schlichting waves on interactive marginally separated Jlows 509 
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FIGURE 6. Real (-) and imaginary (----) parts of A .  

is an effective 'coupling coefficient' that accounts for the net growth/decay of the 
instability wave in the intermediate region x2 = O(1). The first term in the exponent 
of the additional factor, being O(exp (constant/s3)), can more than compensate for 
the exponentially small factor in the Fourier transform AT(~, /d)  of mean wall shear, 
which arises from the mismatch of its lengthscale with the instability wavelength. 
I n  a strict asymptotic sense this will of course be counteracted by the exponentially 
small O(exp [-constant (In l/e)/s3]) term. But, since E cannot, as we have already 
indicated, be very different from unity, the net result could augment the coupling 
coefficient numerically, if not in a strict asymptotic sense. 

The A-factor depends only on the argument p/Si  and is plotted as a function of 
that  argument for the n = 1 mode in figure 6.  ao(x) is an O( 1 )  slowly varying amplitude 
function whose calculation is beyond the scope of this work. 

Since K, = 0(1) and T = 0(1) in the region x > x,, x-x, = O(1); i t  follows from 
(2.26), (2.85) and (4.7) that  the disturbance wavelengths in this latter region are now 
formally much larger than their initial wavelengths, e4/Re K,, owing to the gradual 
relaxation of the strong adverse pressure gradient (which allows the wall shear to 
return to normal). 

At the even larger downstream distances, where T takes on the behaviour indicated 
in second expression (3.5), 

which shows that the wavelength is no longer increasing with increasing x but is now 
decreasing like x-4. I n  fact the eigensolutions (4.7) now coincide with the 'Lam & 
Rott ' (1960) asymptotic eigensolutions of the unsteady boundary-layer equation 
appropriately corrected for the decaying external static pressure gradient. They 

17.2 
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4 x 10-6 
r Angle of 
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0 
2 3 4 5 x 10-4 

Unit Reynolds number, U,/Y 

FIQURE 7. Effect of angle of attack on transition Reynolds number (data of Polyakov 1973a, b) .  

therefore turn into decaying TollmienSchlichting waves by the wavelength reduc- 
tion mechanism described by Goldstein (1983). The lowest-order root p1 evolves into 
the TollmienSchlichting wave that ultimately exhibits spatial growth in the 
downstream region. We therefore conclude that the spatially growing Tollmien- 
Schlichting wave evolves from the eigenmode that originally exhibited spatial growth in 
the intermediate region 2, = 0(1) (see figure 2). 

While we are unable to make direct quantitative comparisons with any of the 
experiments of which we are aware, the theory does provide qualitative explana- 
tions of a number of observed phenomena. The effects of angle of attack on flat-plate 
boundary-layer transition were studied by Polyakov (1973a, b). His measurements 
(reproduced here as figure 7)  show that the transition Reynolds number Re, is strongly 
dependent on the angle of attack, and an analysis of the results shows that the 
changes in angle of attack had very little effect on the pressure gradients near the 
lower branch of the neutral stability curve but produced very steep adverse pressure 
gradients near the leading edge. Since the latter probably produced significant 
decreases in the wall shear, the observed decrease in Re, may be attributable to the 
receptivity mechanism considered in this paper. Vorob'yev et al. (1976) conducted 
similar experiments but used a small trailing-edge flap to generate their adverse 
pressure gradients. Their results are similar to those of Polyakov (1973a, b) .  Figure 
8 shows their measured static pressures at various flap angles. Curves 3-6 probably 
correspond to marginally separated flows. 

Another relevant experiment was conducted by Kachanov, Kozlov & Levchenko 
(1978), who produced their unsteady flow by placing a vibrating ribbon somewhat 
below and at an unspecified distance upstream of the leading edge of their flat plate. 
They measured the unsteady velocity fluctuations in the upper surface boundary 
layer and found that they exhibited a large peak just downstream of the maximum 
mean flow velocity and a very rapid downstream decay beyond that point. Their data 
are shown in figure 9. The relatively large maximum in the mean surface velocity 
suggests that their plate was at an angle of attack to the stream and that the flow 
was marginally separated. The peak in the velocity fluctuations may therefore be 
associated with a local instability of that flow. The rapid downstream decay would 
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Distance along plate (m) 

FIGURE 8. Static pressure distribution for various flap angles in Vorob’yev et al. (1976) 
experiment. 

Downstream distance from leading edge (mm) 

FIGURE 9. R.m.s. velocity fluctuation measured by Kachanov et a2. (1978) (also containing data 
left out of paper, supplied by Professor M. V. Morkovin). 

then be attributable to the stabilization of the boundary layer resulting from the 
subsequent increase in wall shear. 

Paterson et al. (1972) and Arbey 6 Bataille (1983) studied the tones produced by 
an airfoil in a completely uniform and presumably steady mean flow. Fink (1975) 
suggested that, they could be attributed to a feedback mechanism involving upstream- 
propagating acoustic disturbances generated by Tollmien-Schlichting waves passing 
over the trailing edge. The process would be self-sustaining if the acoustic waves were 
able to regenerate the Tollmien-Schlichting waves at some point in the laminar 
boundary layer, which Arbey & Bataille (1983) found to be the maximum-thickness 
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point. Smith (1986) suggests that  marginally separated flows occur just downstream 
of the maximum-thickness point on thick airfoils such as those used in these 
experiments. We therefore expect the present receptivity mechanism to have played 
a role in producing the tones that were observed there. 

The authors would like to thank Professor F. T. Smith (University College, 
London) for sending one of them (M. E. G.) an earlier version of his paper with Elliott 
on dynamic stall, Professor M. V. Morkovin for providing some data left out of 
Kachanov, Kozlov & Levchenko (1978), and Mr David Wundrow for helping 
with the numerical computations. S. J.C. is grateful to Professor D. W. Moore for 
helpful discussions of the work. 

Appendix A 

and p ) ,  i t  follows from (3.3)-(3.6) and (3.39) that  
Since the dispersion relation (3.28) determines K as a function of A (for a given So 

KC - K (  [A; 2 4 )  + K ( W )  (A 1) 

where 

is (to lowest order of approximation) a uniformly valid composite expansion of 
the complete wavenumber K, in 0 < x--2, < s-l as s+O. It therefore follows that 

iJoxK,dX = iJow {~([/\~-2~])-~(~)([h~x~])}dX 

then since 

is a uniformly valid leading-order composite expansion for K ( ~ ) ( [ T / B ] )  in -2, < x < co 
as E + O ,  it follows from (3.28), (3.29), (3.21), (4.1) and (4.2) that  (A 3) can be put in 
the form (4.3). 

Appendix B. Asymptotic expansion of dispersion relation 
I n  this Appendix we derive a formula for the asymptotic expansion of the 

derivative of the parabolic cylinder function in terms of the Airy-function derivative 
Ai'. 

It follows from Olver (1959, equations (4.14), (4.16), (7.4), (8.13), (8.15), (8.16) and 
(8.19)) that 
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as Jpol --f co, --K < argpo < -K, uniformly with respect to t, with t restricted to the 
domain depicted in Olver (1959, figure 7), g(po) denoting a function of po whose 
asymptotic expansion is given by Olver (1959, equation (6.2)) and 

t 

1 
gd =f ( t2- l ) td t .  

Then Eo x 2qt- 1 )  (B 3)  

for It- 1 I < 1, and (B 1) becomes 

- g 0 ( p 0 ) A i ’ ( ( 2 p ~ ) ~ ( t - l ) )  for It-11 -4 1 ,  (B 4 )  

Appendix C 
This Appendix further explains the choice of streamwise lengthscale, say IS, 

normalized forcing frequency, i.e. Strouhal number S, and minimum wall-shear Trnin, 

that was adopted in $ 2 .  Figure 10 is a summary of the Reynolds-number scaling, in 
the limit R-+ 00, of the (asymptotically distinct) discrete normal modes of given real 
Strouhal number that can exist on a mean boundary-layer flow with scaled wall shear 
T and normalized inviscid pressure gradient p (see (3.2)-(3.4) for the definition of T ,  
and recall that p is assumed to be positive and order one). There is a unique relation 
between the orders of magnitude of S, T and 6 for any given mode, and for simplicity 
we choose to explicitly exhibit the relation between the first two. 

We begin with the long dashed line, which corresponds to an unsteady triple-deck 
interaction scaling for the case where the mean velocity in the viscous wall layer is 
dominated by the pressure-gradient term b y 2  rather than the wall-shear term Ty.  

This is the scaling that was used in $2. It also applies at the intersection point A 
where the wall-shear and pressure-gradient terms of the mean velocity are of the same 
order in the lower deck. The point A therefore corresponds to the scaling T = O(R-i?i), 
which is indicated in figure 10 and which was used in $3 to study the eigenmodes 
in the outer region (i.e. region 2 in figure 2).  This scaling produces the most general 
eigenmode structure consistent with the triple-deck interaction. The solid line 
extending to the right of point A corresponds to the standard unsteady triple-deck 
interaction scaling S = O(Bfl), which applies in the vicinity of the lower branch of 
the neutral stability curve (Reid 1965; Smith 1979; Goldstein 1983). 

The eigenmodes are generated by variations in the wall shear T ,  and these 
variations are most rapid where T is a minimum. A scaling with S = O(H) and 
Tmin = O ( R A )  would therefore seem of interest, because the most general type of 
eigenmode would be excited in the region of marginal separation. However, the steady 
flow is non-interactive and an analysis analogous to that in $2 for this scaling leads 
to a governing equation that is not easy to solve by, for instance, a Green-function 
technique (the equation is related to (3.15)). Moreover, point B corresponds to the 
shortest mean flow lengthscale and therefore leads to the best match between the 
steady- and unsteady-flow streamwise lengthscales and consequently to the largest 
coupling coefficient. We therefore chose to study the scaling marked by point B in 
figure 10, i.e. S = O(&) and Tmin = O(R-:), which combines an interactive steady flow 
with a general form of eigenmode in the region of marginal separation. 
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log s - 
log R 

I *\.I * 
-1 -1 I 4  0 5 - a  

FIGURE 10. Parameter space for discrete normal modes, fi > 0. (i) The n = 1 mode. Region I :  
non-interactive decaying mode. Region I1 (a) : growing TollmienSchlichting wave. Regions 
I1 ( b e )  : long-wavelength growing Rayleigh mode. Region I11 (a) : interactive growing Ruban- 
Ryzhov-Smith mode. Region I11 (b) : non-interactive decaying Smith-Elliott mode. Regions I, 
II(a, b): wall-shear component of mean flow dominant in lower layer. Regions II(c-e), III(a, b): 
pressure-gradient component of mean flow dominant in lower layer. (ii) The n = 2,3 ,4 , .  . . decaying 
modes. Regions I, I11 : non-interactive asymptotic structure. Regions I1 ( a d )  : zero-displacement 
asymptotic structure. Regions I ,  II(u*): wall-shear component of mean flow dominant in lower 
viscous layer. Regions II(d), 111: pressure-gradient component of mean flow dominant in lower 
viscous layer. (iii) Range of validity in parameter space of limiting forms of the coupling coefficient 
(4.8) (abscissa log~,,,/logR). n = 1 mode: regions II(c-e) and III(a). n = 2 , 3 , .  . . modes: region 
I1 (d )  (possibly regions I11 (a, b), but further analysis required). 

0 

log T/log R 

Only Lam & Rott (1960) eigenmodes can exist in region I. There are an ‘infinite’ 
number of these non-interactive modes, all of which decay in the downstream 
direction as a result of viscous effects. There are also infinitely many spatially 
decaying eigenmodes in regions I1 ( a d )  and 111. In region 111, they have a non- 
interactive asymptotic structure, with fluctuations in displacement that are much 
larger than those in pressure gradient; and vice versa in regions I1 ( a d ) .  The largest 
contribution to the lower-deck mean flow velocity comes from the wall-shear term 
in the regions to the right of the dashldouble-dot line, and from the pressure-gradient 
term in the regions to the left. (The dividing scaling is obtained by equating the 
temporal and viscous terms in (2.34) to determine the wall-layer thickness, and then 
equating the wall-shear and pressure-gradient terms in the corresponding mean-flow 
velocity.) A t  the boundary between regions I1 (c ,  d )  and I1 ( e )  these decaying modes 
are governed by the linearized Naviel-Stokes equations and there are pressure 
variations across the main deck. 

In addition to the decaying modes, there is also a t  least one growing mode in region 
11. In  region I1 (a), the growing mode is a Tollmien-Schlichting wave and viscous 
effects determine its growth rate (the upper solid line is the scaling at which the upper 
branch of the neutral curve would be found i f p  < 0, cf. Reid 1965). The boundary- 
layer-thickness Strouhal number is order one on the uppermost dotted line, which 
means that the mode is unsteady over the entire boundary layer along this line, and 
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of relatively low frequency and long wavelength below it. Hence in regions I1 (be) 
the growing eigenmode is essentially a long-wavelength inviscid Rayleigh mode 
(recall that the mean flow is inflexional because the pressure gradient p is assumed 
to be positive). The asymptotic structure in regions I1 (b) / I I  ( c - e )  is slightly different 
because respectively the wall-shear/pressure-gradient terms of the mean flow domi- 
nate in a thin inviscid layer close to the wall. 

In  region 111 there is also a mode with a unique asymptotic structure. It can be 
deduced as a ‘high’-frequency limiting case of the viscous low-frequency mode 
studied by Ruban (1982b), and Ryzhov & Smith (1984) for S - R-h. This mode is 
interactive and growing in region 111 (a) ,  and non-interactive and decaying in 111 (b) 
(Smith & Elliott 1985). 

Since the scaling we have chosen is unlikely to agree precisely with experimental 
conditions, it is important to assess the region of parameter space for which our 
formula (4.8) for the coupling coefficient remains valid. If the abscissa of figure 10 
is taken as log.~,~,/log R, then a limiting form of (4.8) is valid in regions I1 ( c - e )  for 
the growing n = 1 mode, and in region I1 (d) for the decaying n = 2,3,. . . modes. It 
has to be modified along the dot/dash and double-dot/dash lines respectively, to 
account for the fact that the pressure-gradient and wall-shear terms of the mean flow 
are of equal magnitude in the wall layer there. 

Formula (4.8) can also be extended into region I11 (a)  for the n = 1 mode, and 
possibly into regions 111 (a,  b) for the n = 2,3,4, . . . modes. In  the latter case, the 
analysis is complicated by the fact that the real part of the roots K,  for n = 2,3,4, . . . 
tends to zero in the inner region 1 of figure 2. The resulting lower-deck asymptotic 
formulas for the corresponding, non-interactive modes, which are valid when 
Y = 0(1), (where Y is defined in (2.30)) do not give decay as Y+m, which makes 
matching with the main-deck solution impossible. These modes can then only exist 
in some limiting asymptotic sense. 
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